

Resistance Scaling and Predictions of SLICE Hulls from Model Tests

LT Henry W. Stevens

Thesis Advisor: F. A. Papoulias

- Extrapolate ship resistances from model test data
- modify present day accepted scaling techniques, which were derived for monohulls, to fit the SLICE design

- How much will the ship have ?
- Will the ship achieve the desired speed?
- What are the sources ?

- Build a model and test it in a tank
- Determine required force to tow the model at incremental speeds
- At a constant velocity, this force equals the resistance.
- Extrapolate ship resistance from model data

Model Test Data

- Dimensions from Lockheed ship drawings
- From Lockheed tests:
 - model velocities
 - total drag = force required to tow at constant speeds
 - fluid parameters

Froude Hypothesis: a modern interpretation

$$C_T(Rn, Fn) = C_F(Rn) + C_R(Rn, Fn)$$

$$C_T(Rn,Fn) = C_F(Rn) + C_{WM}(Fn) + C_{FORM}$$

Ship Resistance Predictions

- Two accepted approaches used to extrapolate ship resistances from model data
 - ◆ ITTC
 - Hughes
- Both employ Rn and Fn scaling, but in different ways

- Uses Froude hypothesis
- Coefficients

Frictional Rn scaled

Wave Making Fn scaled

Form Drag constant

$$C_T(Rn, Fn) = C_F(Rn) + C_{WM}(Fn) + C_{FORM}$$

- Modifies Froude's hypothesis
- Coefficients

Frictional Rn scaled

Wave Making Fn scaled

Form DragRn scaled

$$C_T(Rn, Fn) = C_F(Rn) + C_{WM}(Fn) + C_{FORM}(Rn)$$

Hughes

 Form drag coefficient is proportional to frictional coefficient by some constant

$$C_{FORM}(Rn) = C_{FO}(Rn)$$

$$C_T(Rn,Fn) = r C_{FO}(Rn) + C_{WM}(Fn)$$

Hughes Form Factor r

 found by assuming the wave making is negligible at low Froude Numbers (low speeds)

$$C_T(Rn,Fn) = C_{FO}(Rn) + C_{FORM}(Rn) + \underbrace{C_{WM}(Fn)}_{0}$$

$$C_T(Rn,Fn) = (1+)C_{FO}(Rn)$$

$$C_T(Rn,Fn) = r C_{FO}(Rn)$$

Procedural Comparison

ITTC

- give more of the total to skin friction, which is Reynolds scaled
- Wave Making is Froude scaled
- Form Drag is constant

Hughes

- gives less of the total to skin friction, which is Reynolds scaled
- Wave Making is Froude scaled
- Form Drag is Reynolds scaled

Scaling Comparison

- Reynolds Scaling
 - model Rn < ship Rn</p>
 - resistance coefficient decreases with increasing Rn
 - the ship coefficient is less than the model coefficient at equivalent speeds

- Froude Scaling
 - model Fn = ship Fn
 - the ship and model resistance coefficients are the same at equivalent speeds

Reynolds vs. Froude Scaling

 One pound of resistance Reynolds scaled < one pound of resistance Froude scaled

Single Length vs. Sectioned Hull

- Monohull approach
 - length determined from Lockheed analysis.
 - roughly equal to the waterline length of the SLICE.

Sectioned Hull

- Divide the submerged hull into strut and pod components
- Sum the individual frictional resistances to find an equivalent coefficient, length, and Reynolds Number
 - larger frictional resistance
 - smaller "equivalent" length and Rn

Why Sectioned Hull?

- Struts and Pods have significantly different lengths
- SWATH research supports this idea
 - better prediction by separately estimating frictional drag for the different components and summing
 - particularly relevant for 2-strut-per-side SWATH's

Further Modifications

Modified Hughes Method

Why Modify?

- Large form factor (r = 1.95)
- The form drag was almost as much as the frictional resistance
- Geometrically easy to separate the struts and pods (already done for friction)
 - struts are thin
 - pods are full form

Modification Thoughts

- What if we evaluate the struts as wing shapes?
- Lots of data on wing shape drag
- Pick a similar shape
- Quantify the strut form drag

Wing Shape: NACA 0012-64

- For the shape, got a wing drag coefficient
- Previously calculated the strut frictional resistance coefficient
- ◆ Strut wave making drag → 0

$$C_{T_{Strut}}(Rn, Fn) = C_{FO_{Strut}}(Rn) + C_{WM_{Strut}}(Fn) + C_{FORM_{Strut}}$$

Strut Form Drag

 Set strut form coefficient as constant and scale by Froude's hypothesis

Pod Form Drag

$$R_{FORM_{Pod}} = R_{FORM} - R_{FORM_{Strut}}$$

- Determine pod form drag
- Rn scale the pod portion by the Hughes technique
- The full form shape of the pods suggests Rn dependency

Modified Hughes Resistances

- Frictional
 - Rn scaled (same as Hughes)
- Wave Making
 - Fn scaled (same as Hughes)
- Form Drag
 - divided into strut and pod components
 - PODS: Rn scaled (same as Hughes)
 - STRUTS: Constant coefficient

C

Correlation Allowance

- Added to the ship total to account for underestimation by scaling techniques
- used CA = 0.0005
- For SWATH hulls:
 - \bullet CA = 0.0005
- Lockheed:
 - \bullet CA = 0.0005

Resistance Calculation

$$R = C\left(\frac{1}{2} \quad S \ V^2\right)$$

- \bullet R = Resistance
- ◆ C = Resistance Coefficient
- ρ = density of the fluid
- \bullet S = wetted surface area
- ◆ V = hull velocity

Ship Total Resistance

SHP @ 30 knots

- Lockheed parameters
 - \bullet PC = 0.73
 - Lycoming TF 40
 - for continuous operation, can provide 6850 hp

- ITTC Single Length
 - will not achieve 30 kts.
- All other scaling procedures
 - sustained 30 kts. is achievable
- for the given propulsive coefficient, believe the SLICE will achieve 30+ knots

- Scaling technique
 - ITTC overestimates
 - Hughes underestimates
- Best analyzed as a sectioned hull vice single length
- Further modifications to monohull scaling techniques should include strut and pod form drag investigations

- CFD analysis of the struts and pods to validate the division of the form drag
 - validate constant scaling for the strut form drag
 - validate Rn scaling for the pod form drag
- Include canards and stabilizers in the resistance calculations

Resistance Scaling and Prdictions of SLICE Hulls from Model Tests

LT Henry W. Stevens Thesis Advisor: F. A. Papoulias